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0.1 INCIDENCE STRUCTURES (OR HYPERGRAPHS)

Definition 0.1 An incidence structure (or: hypergraph) is a triple D = (P,B,I),
where P and B are disjoint sets, I is a relation between the elements of P and
B, that is I ⊂ P × B. The elements of P are called points , the elements of
B are called blocks, I is the incidence relation. The elements of I (as ordered
pairs) will be called flags.

Definition 0.2 Let D = (P,B, I) and D′ = (P′,B′, I ′) be two incidence
structures (hypergraphs). The mapping π : P∪B → P′∪B′ is an isomorphism,
if it is bijective and

Pπ = P′, Bπ = B′;

pIB ⇐⇒ pπI ′Bπ, ∀p ∈ P, ∀B ∈ B.

We also say that D and D′ are isomorphic. If D = D′, then π is called an
automorphism.

Definition 0.3 The dual of D = (P,B,I) is D∗ = (P∗,B∗,I∗), where P∗ = B,
B∗ = P, and I∗ is the inverse of I.

Definition 0.4 Let p ∈ P be a point. The degree of p is the number of blocks
incident to it, that is

deg(p) = |{B ∈ B : p I B}| .

Similarly, the degree of a block is

deg(B) = |{p ∈ : p I B}| .

It may happen that two different blocks are incident with the same set
of points (“repeated blocks”). If this does not happen, then we call the hy-
pergraph (incidence structure) simple. In this case we can identify the blocks
with the set of points incident with them. More precisely, this means that D =
(P,B,I) is isomorphic to D∗ = (P,B∗,∈), where B∗ = {{p : pIB} : B ∈ B}.
We will almost exclusively deal with such simple structures. We can also call
them set systems.

1



Definition 0.5 The pair H = (V (H), E(H)) is a simple hypergraph, if the
elemnts of E(H) are subsets of V (H). A hypergraph is r-regular is every point
has degree r. It is called k-uniform, if every block has degree k.

We may note that the dual of a hypergraph will be simple if there are no
points in the original structure that are incident with the same set of blocks.

Example 0.6 Let P = {0, . . . , 6}, and

B = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}.

Incidence is the relation ∈. This structure is isomorphic to PG(2, 2), and called
the Fano plane.

Definition 0.7 Let D = (P,B, I) be a finite hypergaph. List the points:
p1, . . . , pv, and blocks: B1, . . . , Bb. The incidence matrix of D is the matrix
M = (mij) (i = 1, . . . , v; j = 1, . . . b), where

mij =
{

1, if pi I Bj

0, otherwise.

The adjacency matrix of D is A = MMT , which is clearly symmetric. The
element in row i and column j of A tells us how many blocks are incident with
pi and pj. In particular, the main diagonal contains the degrees of the points.

Lemma 0.8 For every incidence structure we have

∑

p∈P

deg(p) =
∑

B∈B

deg(B). (1)

Proof. Count the flags (incident point-block pairs) in two ways.

Corollary 0.9 Let H be an r-regular, k-uniform hypergraph with v points and
b blocks. Then vr = bk.

Definition 0.10 An incidence structure with the same number of points and
blocks is called square (or sometimes symmetric).

2



1 BLOCK DESIGNS

Definition 1.1 The simple hypergraph D = (P,B,∈) is called a block design,
more precisely a 2 − (v, k, λ)-design if it has v points, (|P| = v), k-uniform
(that ∀B ∈ B : |B| = k), moreover any two distinct points are contained in
precisely λ blocks. If λ = 1, the block design is called a Steiner system.

If D = (P,B, I) contains repeated blocks, and satisfies the above require-
ments (has v points, every block is incident with k points, every pair of points
is contained in λ blocks, the we call it a (uniform) 2-(v, k, λ)-structure. If the
uniformity condition is also dropped, then we call it a 2-structure.

The next proposition shows that block designs are regular.

Proposition 1.2 In a 2 − (v, k, λ) design (and a 2-(v, k, λ)-structure) each
point has degree r, where

r = λ(v − 1)/(k − 1),

the number of blocks is

b = λv(v − 1)/(k(k − 1)).

Proof. Fix a point p. Count the flags (q, L) in two ways, where p ∈ L, q ∈ L,
p 6= q. This is on the one hand deg(p)(k − 1), on the other hand (counting
from point to point) it is (v − 1)λ. This gives r in advance, the formula for b
comes from using bk = vr (see 0.9).

Corollary 1.3 For the existence of a 2 − (v, k, λ)-design it is necessary that

(1) λ(v − 1) ≡ 0 (mod k − 1);

(2) λv(v − 1) ≡ 0 (mod k(k − 1)).

Already around 1850 the question of constructing 2− (v, k, λ)-designs was
posed. The main question is whether the above divisibility conditions are also
sufficient.

We will first consider the simplest case λ = 1, k = 3. 2 − (v, 3, 1)-designs
are also called Steiner triple systems. A Steiner triple system on v points will
be denoted by STS(v). The divisibility conditions give 2|v − 1 and 6|v(v − 1).
So, Steiner systems can only exist if v ≡ 1 or v ≡ 3 (mod 6). Our aim is to
show that for every v ≡ 1 or v ≡ 3 (mod 6) there is an STS(v).
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Example 1.4 (Kirkman v → 2v+1 construction.) This will be a recursive
construction. We show that whenever there is an STS(v), then there is also
an STS(2v + 1) = S∗, which contains the original STS(v) as a subsystem.

Actually, if we want to guarantee that STS(v) is a subsystem, then the
construction can be figured out: If STS(v) = S is a subsystem, then every
block (triple) meets S in 0,1, or 3 points. The number of blocks meeting S in
1 point is v(v + 1)/2, because the blocks through a fixed point of S partition
S∗ − S in pairs. By counting the total number of blocks one can see that
there are no blocks meeting S in 0 points. So, it is enough to define the blocks
meeting S in 1 point. If we consider S∗ − S as the complete graph Kv+1, then
the blocks through a fixed point form a perfect matching. For different points,
these perfect matchings are disjoint (if they had a common edge, then the
endpoints of that edge would determine 2 blocks). If we imagine the perfect
matchings as colour classes, then this gives an edge colouring of Kv+1 with v
colours. (Note that v was either 1 or 3 modulo 6, so it is odd, hence v + 1 is
even and we learnt from graph theory that the edge chromatic number of the
complete graph Kv+1 is indeed v in this case.)

The actual construction is now a converse to this: take a colouring of the
edges of Kv+1 with v colours, and to each colour class associate a point of
STS(v). The points of our STS(2v + 1) = S∗ will be the points of STS(v) and
the points of Kv+1. The blocks are the blocks of STS(v) and the following sets:
{p, v1, v2}, where p is a point of the STS(v) and {v1, v2} is an edge belonging
to the colour class associated with the point p. It is not difficult to check that
with this definition there will be a unique block through every pair of points.

Staring from the Fano plane we get an STS(15). However, Kirkman’s con-
struction is not enough to construct an STS(v) for every v ≡ 1 or 3 (mod 6).
The next construction will be an explicit one.

Example 1.5 (Skolem’s constructions.) We first present it for v = 6m+1.
In this case the number of blocks is b = m(6m + 1). The points are simply
0, 1, . . . , 6m. Let us arrange the points with one exception (6m) in the following
matrix

0 1 . . . m − 1 | m m + 1 . . . 2m − 1
2m 2m + 1 . . . 3m − 1 | 3m 3m + 1 . . . 4m − 1
4m 4m + 1 . . . 5m − 1 | 5m 5m + 1 . . . 6m − 1

The blocks belong to three types:

(i) {i, 2m + i, 4m + i}, where 0 ≤ i ≤ m − 1

(ii) {m + i, 2m + i, 6m}, {3m + i, 4m + i, 6m}, {5m + i, i, 6m}, again for
0 ≤ i ≤ m − 1,
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(iii) Those triples {a, b, c}, in which a and b are in the same row of the matrix
above and c is in the next row (mod 3), moreover

if a + b even, then 2c ≡ a + b (mod 2m), and c is in the first half
of the row,

if a + b is odd, then 2c ≡ a + b − 1 (mod 2m), and c is in the
second half of the row.

One can also use Skolem’s method for v = 6m + 3. Our matrix will be

0 1 . . . 2m
2m + 1 2m + 2 . . . 4m + 1
4m + 2 4m + 3 . . . 6m + 2

the points are just {0, 1, . . . 6m + 2} and there will be two types of blocks:

(i) “vertical blocks”: {j, j + 2m + 1, j + 4m + 2}, (j = 0, . . . , 2m).

(ii) {a, b, c}, where a, b are in the same row, c is in the next row and 2c ≡ a+b
(mod 2m + 1).

In both cases it can be verified that we get an STS. Of course, the 6m + 1
case is even more tedious.

Let us also mention the results about small values of v: there is a unique
STS(7), the Fano-plane, a unique STS(9), the affine plane AG(2, 3). There
are two STS(13), and 80 STS(15). This shows that the number of pairwise
non-isomorphic STS(v) grows fast (compared to v).

If k gets larger, then the situation becomes more difficult. For k = 4, we
get v ≡ 1 or 4 (mod 12), and Hanani showed that for every such v there is a
2− (v, 4, 1) Steiner-system. For k = 5, the necessary condition gives v ≡ 1 or 5
(mod 20), and again there is a Steiner system. This is due to Hanani, Wilson
and Ray-Chaudhuri. The case k = 6 is open. In general, asymptotic existence
is known (Wilson), so when v is large enough compared to k, then there is a
2 − (v, k, 1) Steiner-system.

Let us see further examples of block designs.

Example 1.6 Let P be a projective plane of order n. Then it is a 2 − (n2 +
n+1, n+1, 1) design. This is essentially equivalent to the axiomatic definition
of projective planes (so could be an alternative definition).

Example 1.7 Let A be an affine plane of order n. Then A is a 2 − (n2, n, 1)
design. This is essentially equivalent to the axiomatic definition of affine planes
(so could be an alternative definition).
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More generally, projective and affine spaces also give examples of designs.

Example 1.8 Let Σ be the projective space PG(n, q). Define a hypergraph
in which the points are the points of Σ, the blocks are the d-dimensional
subspaces of Σ (for some fixed 1 ≤ d ≤ n − 1). This will be a block design
with parameters

v =
qn+1 − 1

q − 1
, k =

qd+1 − 1

q − 1
,

λ =
(qn−1 − 1)(qn−2 − 1) . . . (qn−d+1 − 1)

(qd−1 − 1) . . . (q − 1)
.

It will be denoted by PGd(n, q). (Note that it will be a square design (that is
v = b) if d = n − 1, in other words, when the blocks are the hyperplanes.

Remark 1.9 The expression for λ is the so-called Gaussian binomial coeffi-
cient

[

n

d

]

q
=

(qn − 1)(qn−1 − 1) . . . (qn−d+1 − 1)

(qd − 1)(qd−1 − 1) . . . (q − 1)
.

From linear algebra we know that it gives the number of d-dimensional sub-
spaces in an n-dimensional vector space. Using this notation the parameters
of PGd(n, q) are

v =
[

n + 1

1

]

q
; k =

[

d + 1

1

]

q

, λ =
[

n − 1

d − 1

]

q
.

The other parameters (r, b) can also be given easily:

r =
[

n

d

]

q
; b =

[

n + 1

d + 1

]

q
.

Example 1.10 We can copy the previous example for affine spaces. The
design AGd(n, q) has the points of the affine space as points, blocks are d-
dimensional affine subspaces (that is cosets of vector subspaces). The param-
eters are

v = qn, k = qd, λ =
[

n − 1

d − 1

]

q
,

r =
[

n

d

]

q
, b = qn−d

[

n

d

]

q
.

There are other geometric, algebraic etc. constructions of block designs.
However, in the examples the parameter λ grows fast. For the existence, we
know the following asymptotic result.

Theorem 1.11 (Wilson’s theorem) If k and λ are fixed, then there is a v0

so that for every v > v0 satisfying the conditions in 1.3, there is a 2− (v, k, λ)
design.
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2 FISHER’S INEQUALITY

Theorem 2.1 (Fisher’s inequality) If k < v in a 2 − (v, k, λ) design, then
b ≥ v.

Proof. Consider the adjacency matrix A of the design. This matrix has r
in the main diagonal, λ elsewhere. We wish to show, that it is non-singular.
To do this, we will compute its determinant. Subtract the first row from the
others. Then we keep the first row and will have r − λ in the main diagonal.
The first column becomes λ − r. Add all the columns to the first one. Then
the matrix will be upper triangular. The first element in the first row will be
r + (v − 1)λ. This implies that A is non-singular, so it has rank v. As A is
MMT , M (and MT ) also has rank v, so b cannot be smaller than v. This
shows b ≥ v.

Let us see another useful way to compute the determinant of the adjacency
matrix. J will always denote the all-1 matrix.

Lemma 2.2 det(xI + yJ) = (x + yn)xn−1 (I, J are n × n matrices).

Proof. The all-1 vector j is an eigenvector of A = xI +yJ , the corresponding
eigenvalue is x+yn. A is symmetric, so it has an orthonormal basis consisting of
eigenvectors, actually, j can be one of the basis vectors. The other elements v of
the basis are perpendicular to j, so we have vJ = 0. From this v(xI+yJ) = xv
follows, which implies that x is an eigenvalue with multiplicity (n − 1).

Corollary 2.3 The adjacency matrix of a non-trivial (k < v) block design has
determinant rk(r − λ)v−1. So the rank of the adjacency matrix is v.

Proof. We saw that det(MMT ) = (r−λ)v−1(r +(v− 1)λ). Using 1.3 we see
that (v − 1)λ) = (k − 1)r, so (r + (v − 1)λ) = rk.

In the extremal case b = v we get further nice properties.

Theorem 2.4 For a non-trivial (k < v) block design the following are equiv-
alent:

(a) b = v;

(b) r = k;

(c) every two distinct blocks have λ points in common;

(d) every two distinct blocks have the same number (say µ) of common points.

7



Proof. The equivalence of (a) and (b) is trivial because of vk = br. To prove
(c), we will compute MT M . If r = k, then v = b and MJ = JM , so M can be
interchanged with MMT = λJ +(r−λ)I, hence M2MT = MMT M . As MMT

is non-singular, M is also non.singular, it has an inverse M−1. So MT M =
M−1MMT M = M−1M2MT = MMT . So we get MMT = MT M . The
elements of the matrix MT M (sometimes called the block adjacency matrix)
are the intersection sizes |B ∩ B′|, so every two distinct blocks intersect in λ
points. So (b) implies (c). (c)→(d) is trivial. If (d) holds, then the dual of the
block design is also a block design (v and b are interchanged and we have µ as
λ in the dual). Applying Fisher’s inequality for the original block design gives
b ≥ v, applying it to the dual design gives v ≥ b. Hence b = v, which is (a).

3 t-DESIGNS

Definition 3.1 The simple incidence structure D = (P,B, I) is called a t −
(v, k, λ) design, (v > k > 1, k ≥ t ≥ 1), if the number of points is v, every
block is incident with k points and every t distinct points are in precisely λ
blocks. If repeated blocks are allowed then we call it a (uniform) t − (v, k, λ)
structure.

For t = 2 we get the notion of designs back and for t = 1 this definition
just gives regular, uniform hypergraphs.

Let us start with the necessary divisibility conditions for t-designs, gener-
alizing Corollary 1.3.

Proposition 3.2 If there exists a t − (v, k, λ) design, then for every i =
0, 1, . . . , t − 1,

λi = λ

(

v−i
t−i

)

(

k−i
t−i

)

is an integer.

Proof. The number λi is the number of blocks thtough a set I of i points.
Indeed, let us add t− i points to I to get t distinct points. After adding these
points there are λ block thorugh the t points. These t− i points can be chosen
in
(

v−i
t−i

)

ways. We obtain the same block
(

k−i
t−i

)

times, so we have to divide
with this.

If we put i = t− 1, then we get k − t + 1|λ(v − t + 1). For i = 0 we get the
number of blocks, b, for i = 1, we get r.

This result also shows that a t−(v, k, λ) design is also an i−(v, k, λi)-design
(with the same set of points and blocks).
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Example 3.3 1) If B is the set of all k-element subsets of P then we get the
a k-uniform hypergraph, which is a t-design for every t ≤ k, the value of λ is
λ =

(

v−t
k−t

)

. This is a trivial example, and will be excluded most of the time.

2) The affine space AG2(n, 2) (n ≥ 3) is a 3 − (2n, 4, 1) design.

There are other geometric examples, circle geometries give 3− (q2 + 1, q +
1, 1)-designs.

It is in general diffucult to construct non-trivial t-designs with large t. The
situation is simpler if we allow repeated blocks.

Theorem 3.4 Assume t < k < v − t. Then for a suitable λ there is a t −
(v, k, λ)-structure, in which not all k-element subsets are blocks.

We skip the proof.
Later we will see the so-called Witt designs connected to the Golay codes,

which have t = 4, 5. For quite a while there were no non-trivial t-designs known
for t ≥ 6. The first examples with t = 6 were constructed by Magliveras and
Leavitt (in the seventies). Then Luc Teirlinck showed that t can be arbitrary
large (in the eighties).

Theorem 3.5 (Teirlinck’s theorem.) For a given t let

µ =
t
∏

i=1

([

{

(

i

n

)

: n = 1, . . . , i}

]

· [{1, . . . , i + 1}]

)

.

Then for every v ≡ t (mod µ) the (t + 1)-element subsets of a v-element set
X can be partitioned into t − (v, t + 1, µ)-designs. In particular, there exist
t − (v, t + 1, µ)-designs if v ≡ t (mod µ), λ ≡ 0 (mod µ), and v > λ + t.

The proof is difficult. The symbol [, ] denotes the least common multiple in
the formula. There is a very recent, incredibly strong result by Peter Keevash,
who proved the analogue of Wilson’s theorem for t-designs: if all the divisibity
conditions in Proposition 3.2 are satisfied and v is large enough compared to
t, k, λ, then there exists a t − (v, k, λ) design.

The famous Fisher inequality was extended to t-designs by Ray-Chaudhuri
and Wilson.

Theorem 3.6 Let D be a t − (v, k, λ)-design, where t = 2s and k ≤ v − s.

Then b ≥
(

v
s

)

.

Note that the same holds for t = 2s+1, since a (2s+1)-design is automat-
ically a 2s-design. Ray-Chaudhuri and Wilson also proved a dual result. We
state it without proof.
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Theorem 3.7 (Ray-Chaudhuri, Wilson) Let s ≤ k ≤ v − s and let B be a
system of k-element subsets of a set V (|V | = v), for which |B ∩ B′| takes at

most s values (for B 6= B′ ∈ B). Then B ≤
(

v
s

)

.

4 SQUARE DESIGNS

Let us recall that a block design is square if b = v, or equivalently if r = k.
For square designs er have that two distinct block meet in λ points. We also
saw in Lemma 2.2 that det(MMT ) = rk(r − λ)v−1 for the incidence mnatrix
M .

Using k = r and det(M) =det(MT ) we get

(det(M))2 = (k − λ)v−1k2.

Corollary 4.1 (Schützenberger) If there is a a square 2−(v, k, λ)-design, then
(k − λ)v−1 is a square. If v is even, then k − λ has to be a square.

Definition 4.2 For a square 2− (v, k, λ)-design we call n = (k−λ) the order
of the (square) design.

The next theorem will give a necessary condition for the existence of a
square design if v is odd.

Theorem 4.3 (Bruck–Chowla–Ryser) Assume that v is odd and there is a
square 2 − (v, k, λ)-design. Then the diphantine equation

z2 = (k − λ)x2 + (−1)(v−1)/2λy2

has a non-trivial integer solution.

Non-trivial means that the solution is different from x = y = z = 0. The
proof is difficult and is omitted.

For projective planes, the condition is very simple. This was proved by
Bruck and Ryser one year before the Bruck, Chowla, Ryser theorem above.

Theorem 4.4 If there is a projective plane of order n (a square 2− (n2 +n+
1, n + 1, 1) design) and n ≡ 1 or 2 (mod 4), the n can be written as the sum
of two integer squares.

The theorem rules out the existence of a plane of order 6. It leaves open
the case n = 10 but Lam, Swiercz and Thiel showed (using a computer) that
there is no plane of order 10. So far, this is the only example known, when the
square design could exist but it does not exist.
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Example 4.5 The design PGn−1(n, q) is a square design. The parameters are

v =
[

n+1
1

]

q
, k =

[

n
1

]

q
, and λ =

[

n−1
n−2

]

q
=
[

n−1
1

]

q
.

In the particular case when n = 2, we have λ = 1. In general, axiomatically
defined projective planes of order n are square designs with λ = 1 (so there are
infinitely many of them). For λ > 1 it is not known whether there infinitely
many square designs with the given λ.

4.1 HADAMARD MATRICES AND DESIGNS

An important infinite family of square designs is the family of Hadamard de-
signs.

Definition 4.6 A block design with parameters 2−(4λ+3, 2λ+1, λ) is called
an Hadamard design.

Note that such a design has b = v, because b = λv(v − 1)/k(k − 1).

Definition 4.7 An n × n matrix H is called an Hadamard matrix if every
element of H is ±1 and HHT = nI.

Note that from HHT = nI it follows that HT H = nI. The terminology is
motivated by the following inequality of Hadamard for certain determinants:

If we have |aij| ≤ 1 for the elements of an n × n matrix A, then det(A) ≤
nn/2 and we have equality in this bound if and only if the matrix is an Hadamard
matrix.

The intuitive content of the inequality is that the maximum volume of a
parallelotop is attained for the cube.

Example 4.8 The design PGn−1(n, 2) is an Hadamard design.

Example 4.9 The following matrices

(1) ,
(

1 1
1 −1

)

és











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1











are Hadamard matrices.

In general, except for the first two examples above, the order of an Hadamard
matrix is always divisible by 4. To see this, observe that we can multiply any
row or column of an Hadamard matrix by −1 and the resulting matrix will
also be an Hadamard matrix. Besides this we can also permute the rows and
columns without losing the Hadamard property. Using these transformations,
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we may assume that the first row and column consists of +1’s, and in the
second row first we have m times +1, and then n − m −1’s. Since the first
and second row are orthogonal, the number n = 2m, and in the second row
we have m +1’s and then m −1’s. If there is another row (so n > 2), then
let us denote by x the number of +1’s in the first m positions. Since this
row is orthogonal to the first row, the number of +1’s in the second m po-
sitions is m − x. Hence the scalar product of the second and third row is
x · 1 + (m − x)(−1) + (m − x)(−1) + x · 1 = 0. This gives 4x − 2m = 0, so m
is even and n = 2m is divisible by 4. This proves the next theorem.

Theorem 4.10 The order of an Hadamard matrix is 1,2 or divisible by 4.

Let us remark that for every two rows of an Hadamard-matrix there are m
columns, where they both have a +1, m columns, where they both have a −1,
and similarly the patterns +1,−1 and −1, +1 occur m times.

It is an important open conjecture that for every n divisible by 4, there
is an Hadamard matrix of order n. The smallest value for which an n × n
Hadamard matrix is not known, is n = 428.

The next theorem shows the relation between Hadamard matrices and
Hadamard designs.

Theorem 4.11 There is a 4n × 4n Hadamard matrix, if and only if there is
an Hadamard design with parameters 2 − (4n − 1, 2n − 1, n − 1).

Proof. By the comments before Theorem 4.10 we may assume that the first
row and column consist of +1’s. In the remaining (4n − 1) × (4n − 1) matrix
replace the −1’s by 0. The resulting matrix is the incidence matrix of an
Hadamard design. Indeed v = 4n − 1 and k = 2n − 1 are immediate. We
have to show that any two rows contain precisely n−1 common +1’s (columns
where we have +1 in both rows), because in the original Hadamard matrix
there were m such columns (including the first one which was deleted).

The other direction is similar, if we take two rows of the adjacency matrix,
then there are n−1 columns, where they both have a +1. There are r−λ = n
columns, where one of the rows contains a 1, the other one a 0. If we add a
first row and column, consisting only +1’s, then we can see that each pattern
(0 − 0, 1 − 0, 0 − 1, 1 − 1) occurs n times, hence after replacing the 0’s by −1,
we get that the rows are orthogonal.

The next construction is a recursive one.

Proposition 4.12 If Hn is an n × n Hadamard matrix, Hm is an m × m
Hadamard matrix, then their Kronecker product Hn⊗Hm is also an Hadamard
matrix.
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We just have to recall the definition of the Kronecker product.
Starting from a 2 × 2 Hadamard matrix and applying the previous con-

struction repeatedly we get an Hadamard matrix for every power of 2. This
construction is due to Sylvester and one can show that the Hadamard design
corresponding to it is the projective space PG(n, 2).

Let us see now an explicit construction using finite fields. It gives an
Hadamard matrix for n = 12 (the first value not covered by Sylvester’s con-
struction).

Example 4.13 Let q ≡ 3 (mod 4) be a prime power. Let F be GF(q), and
S be the set of non-zero squares. Define D = (P,B) in the following way:

Let P = F , B = {S + x : x ∈ F}. This is an Hadamard design, and the
construction is called Paley’s construction.

The parameters are v = q, k = (q−1)/2, λ = (q−3)/4. The existence of λ
is not trivial; we will sketch the proof. We have to show that every pair a, b is
contained in the same number of blocks. The set of blocks is invariant under
translation, so it is enough to show this for a pair 0, a. Multiplication by a
square is also an automorphism of the structure, so it is enough to consider
a square a and a non-square a. They are +1 and −1. 0, 1 ∈ S + u, if there
is a non-zero square x2 such that 0 = x2 + u and another y2 which satisfies
1 = y2 + u. Subtracting these two equations gives 1 = y2 − x2. If we do the
same with −1 instead of 1, then we get the equation −1 = y2 − x2. In both
cases x, y 6= 0, so the two equations are essentially the same, they clearly have
the same number of solutions. This shows that λ exists. The structure satisfies
v = b, so λ can be computed and we indeed get λ = (q − 3)/4.

Definition 4.14 Let D = (P,B) be a t − (v, k, λ) design, P be a point. The
design D′

P = (P\{P}, {B \{P} : B ∈ B, P ∈ B}) is called the derived design
of D. It is easy to see that D′

P is a (t − 1) − (v − 1, k − 1, λ) design.

The converse of derivation is more interesting, we will call it one point
extension of a design. This is sometimes a good method to construct a design
with large(r) t.

Definition 4.15 Let D = (P,B) be a t − (v, k, λ) design, ∞ /∈ P be a new
point. A design D∗ = (P ∪ {∞},B∗) is called a one point extension of D if
the derived design of D∗ with respect to ∞ is D. It is easy to see that D∗ is a
(t + 1) − (v + 1, k + 1, λ) design, if it exists.

The difficulty in constructing a one point extension is that we only know
that the blocks containing ∞ are B ∪ {∞}, for the blocks of D, which is
typically a small fraction of the blocks. This immediately gives a necessary
condition for a design to have a one point extension.
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Proposition 4.16 If a 2 − (v, k, λ) design has a one point extension, then
k + 1 divides b(v + 1).

Proof. We use the notation in the above definition and write a ∗ to the
parametrs of D∗. As the number of blocks in D∗ containing ∞ is b, we have
r∗ = b. As v∗r∗ = k∗b∗, v∗ = v + 1, and k∗ = k + 1, we indeed get that k + 1
divides b(v + 1).

Corollary 4.17 If a projective plane of order n (a 2 − (n2 + n + 1, n + 1, 1)
design) has a one point extension, then n = 2, 4.

Proof. The divisibility condition gives n+2|(n2+n+2)(n2+n+1). Consider
the right hand side modulo n + 2, we get that it is 4 · 3. So n + 2 divides 12,
from which n = 2, 4 or 10. As there is no projective plane of order 10, we have
n = 2, 4.

For n = 4, ther is a one-point extension, we will see it at the Golay codes.
The Fano plane is an Hadamard design (with λ = 1), so the extendability
follows from the next theorem.

Theorem 4.18 Let D be an Hadamard design with parameters 2− (v = 4λ+
3, k = 2λ + 1, λ). Then it has a one point extension, which is a 3 − (4λ +
4, 2λ + 2, λ) design.

Proof. Let us add a new point ∞. The new blocks are B ∪ {∞} and the
complements of the blocks, that is P \B, for blocks B ∈ B. We have to prove
that for every 3 points there are λ new blocks containing them. This is trivial
if one of the points is ∞. If not, then in the original Hadamard design we have
to determine how many blocks contain all three points P1, P2, P3 and how
many contain none of them. Let us denote these numbers (for the given points
P1, P2, P3) by c3 and c0 respectively. Using the principle of inclusion-exclusion
we get

c0 = b − 3r + 3λ − c3.

Since b = v = 4λ + 3, r = k = 2λ + 1, we indeed get that c0 + c3 = λ.
Let us remark, that affine planes AG(2, q) have a one point extension (these

are the “circle geometries” mentioned earlier).

14


